|
In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let be an abelian variety, let be the dual abelian variety, and for , let be the translation-by- map, . Then each divisor on defines a map via . The map is a polarization, i.e., has finite kernel, if and only if is ample. The Rosati involution of relative to the polarization sends a map to the map , where is the dual map induced by the action of on . Let denote the Néron–Severi group of . The polarization also induces an inclusion via . The image of is equal to , i.e., the set of endomorphisms fixed by the Rosati involution. The operation then gives the structure of a formally real Jordan algebra. ==References== * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Rosati involution」の詳細全文を読む スポンサード リンク
|