翻訳と辞書
Words near each other
・ Roscoe Mitchell
・ Roscoe Mitchell and the Sound and Space Ensembles
・ Roscoe Mitchell Quartet
・ Roscoe Nicholson
・ Roscoe Orman
・ Roscoe Parrish
・ Rosaschi Air Park
・ Rosasco
・ Rosasen
・ Rosasite
・ RosAsm
・ Rosaspata District
・ ROSAT
・ Rosate
・ Rosati
Rosati involution
・ Rosati Windows
・ Rosati's
・ Rosati, Missouri
・ Rosati-Kain High School
・ Rosato
・ Rosato & Associates
・ Rosato (surname)
・ Rosatom
・ Rosauers Supermarkets
・ Rosaura
・ Rosaura Andreu
・ Rosaura at 10 O'Clock
・ Rosaura Barahona
・ Rosaura Denegre Vaught


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rosati involution : ウィキペディア英語版
Rosati involution
In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization.
Let A be an abelian variety, let \hat A=\mathrm^0(A) be the dual abelian variety, and for a\in A, let T_a:A\to A be the translation-by-a map, T_a(x)=x+a. Then each divisor D on A defines a map \phi_D:A\to\hat A via \phi_D(a)=(). The map \phi_D is a polarization, i.e., has finite kernel, if and only if D is ample. The Rosati involution of \mathrm(A)\otimes\mathbb relative to the polarization \phi_D sends a map \psi\in\mathrm(A)\otimes\mathbb to the map \psi'=\phi_D^\circ\hat\psi\circ\phi_D, where \hat\psi:\hat A\to\hat A is the dual map induced by the action of \psi^
* on \mathrm(A).
Let \mathrm(A) denote the Néron–Severi group of A. The polarization \phi_D also induces an inclusion \Phi:\mathrm(A)\otimes\mathbb\to\mathrm(A)\otimes\mathbb via \Phi_E=\phi_D^\circ\phi_E. The image of \Phi is equal to \:\psi'=\psi\}, i.e., the set of endomorphisms fixed by the Rosati involution. The operation E\star F=\frac12\Phi^(\Phi_E\circ\Phi_F+\Phi_F\circ\Phi_E) then gives \mathrm(A)\otimes\mathbb the structure of a formally real Jordan algebra.
==References==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rosati involution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.